skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singh, Rachee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 2, 2026
  2. Free, publicly-accessible full text available April 3, 2026
  3. Free, publicly-accessible full text available April 2, 2026
  4. Free, publicly-accessible full text available November 18, 2025
  5. Machine learning models are increasingly being trained across multiple GPUs and servers. In this setting, data is transferred between GPUs using communication collectives such as ALLTOALL and ALLREDUCE, which can become a significant bottleneck in training large models. Thus, it is important to use efficient algorithms for collective communication. We develop TACCL, a tool that enables algorithm designers to guide a synthesizer into automatically generating algorithms for a given hardware configuration and communication collective. TACCL uses a novel communication sketch abstraction to get crucial information from the designer to significantly reduce the search space and guide the synthesizer towards better algorithms. TACCL also uses a novel encoding of the problem that allows it to scale beyond single-node topologies. We use TACCL to synthesize algorithms for three collectives and two hardware topologies: DGX-2 and NDv2. We demonstrate that the algorithms synthesized by TACCL outperform the Nvidia Collective Communication Library (NCCL) by up to 6.7x. We also show that TACCL can speed up end-to-end training of Transformer-XL and BERT models by 11%–2.3x for different batch sizes. 
    more » « less